

**Faculty of Engineering and Technology
Department of Electronics and Communication Engineering**

Jain Global Campus, Kanakapura Taluk - 562112

Ramanagara District, Karnataka, India

2022-2023

A Minor Project Synopsis Report on

“Cotton Wool Detection in Diabetic Retinopathy Using Image Processing”

Submitted by

SAMBOU KONE

20BTRMT034

SAGAR MISHRA

20BTROET009

FAISAL SAIFI

20BTREI025

KUMAR RAHUL PRASAD

20BTREI026

Under the guidance of

CHETHAN G. S

Assistant Professor

Department of Electronics and Communication Engineering

Faculty of Engineering & Technology

JAIN (Deemed-to-be University)

Declaration by Students

*We the students **SAMBOU KONE 20BTRMT034**, **SAGAR MISHRA 20BTROET009**, **FAISAL SAIFI 20BTREI025** and **KUMAR RAHUL PRASAD 20BTREI026**, are aware of project conduction procedure and evaluation rubrics. We are also aware that, the project phases are evaluated through continuous assessment.*

Name of the students

Signature

Confirmation by Guide

*I **CHETHAN G. S**, shall guide the above mentioned students in the project titled “” and direct students to submit the project for the academic year 2022-2023.*

Signature of Guide.

Introduction

Diabetic retinopathy (also known as diabetic eye disease), is a medical condition in which damage occurs to the retina due to diabetic Mellitus. It is a leading cause of blindness in developed countries. Diabetic retinopathy affects up to 80 percent of those who have had both type 1 and type 2 diabetes for 20 years or more. In at least 90% of new cases, progression to more aggressive forms of sight-threatening retinopathy and maculopathy could be reduced with proper treatment and monitoring of the eyes. The longer a person has diabetes, the higher his or her chances of developing diabetic retinopathy.

Each year in the United States, diabetic retinopathy accounts for 12% of all new cases of blindness. It is also the leading cause of blindness in people aged 20 to 64. It is the result of damage to the small blood vessels and neurons of the retina. The earliest changes leading to diabetic retinopathy include narrowing of the retinal arteries associated with reduced retinal blood flow; dysfunction of the neurons of the inner retina, followed in later stages by changes in the function of the outer retina, associated with subtle changes in visual function; dysfunction of the blood retinal barrier, which protects the retina from many substances in the blood (including toxins and immune cells), leading to the leaking of blood constituents into the retinal neuropil. Later, the basement membrane of the retinal blood vessels thickens, capillaries degenerate and lose cells, particularly pericytes and vascular smooth muscle sense

FIGURE 1.1 – NORMAL EYE AND DIABETIC EYE

Diabetic Retinopathy Classification

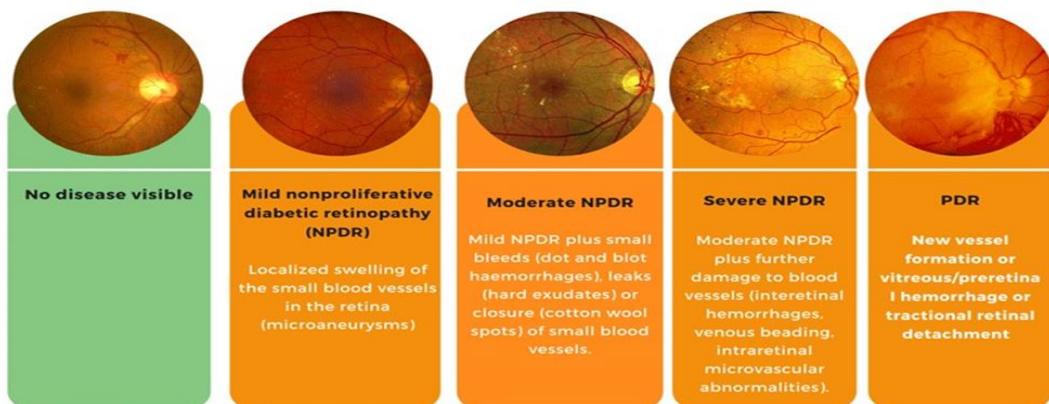


FIGURE 1.2 – TYPES OF EYE AFFECTED

STAGE 1: MILD NPDR

This is the earliest stage of diabetic retinopathy and the first indication of the eye condition. The earliest sign of mild NPDR is the presence of tiny bulges in the retina's blood vessels.

At this stage, a person may not notice any symptoms, as mild NPDR will not typically impact a person's vision. A person will not usually require treatment at this stage. However, if a doctor identifies this stage, they will recommend taking steps to prevent the condition from worsening.

STAGE 2: MODERATE NPDR

At this stage, blood vessels in the retina further swell, interfering with blood flow to the retina.

This prevents the retina from receiving proper nourishment. While mild NPDR involves the presence of at least one micro aneurysm, moderate NPDR involves multiple micro aneurysms.

At this stage, if blood and other fluids accumulate in the macula, a person may notice symptoms such as blurry vision.

STAGE 3: SEVERE NPDR

As the condition advances, blockages occur in larger sections of blood vessels in the retina. This causes a significant decrease in blood flow to this area.

A doctor may identify severe NPDR due to intraretinal microvascular abnormalities (**IRMA**).

This term describes abnormal branching of dilation of existing blood vessels.

STAGE 4: PDR

PDR is the most advanced form of diabetic retinopathy. At this stage, problems with blood vessels have deprived the retina of oxygen and lead to the growth of new, fragile blood vessels. These vessels grow in the retina and the vitreous, the gel-like fluid that fills the back of the eye. These new blood vessels often leak blood into the vitreous, which can cloud vision.

Additionally, these new blood vessels can form scar tissue, which can cause problems with the macula or result in retinal detachment. This can also raise the pressure in the eye and damage the optic nerve. At this stage, a person may experience serious complications and will require treatment to help stabilize their vision. PDR can cause severe vision loss and blindness if left untreated. More than 347 million people worldwide have diabetes, which the World Health Organization predicts will be the fifth leading cause of death globally in **2030**. Due to a growing barrier called Diabetic Retinopathy, persons with diabetes tend to exhibit abnormalities in the retina over time. Diabetic Retinopathy has a 78% likelihood of occurring in those over the age of 30 who have had diabetes for more than 15 years. Long-term diabetes mellitus is the cause of diabetic retinopathy. The symptoms of diabetic retinopathy often don't appear until major damage occurs inside the eye. They include:

- *Blurred vision/ loss of vision*
- *Seeing floaters or dark spots*
- *Difficulty seeing at night*
- *Difficulty distinguishing color vision*

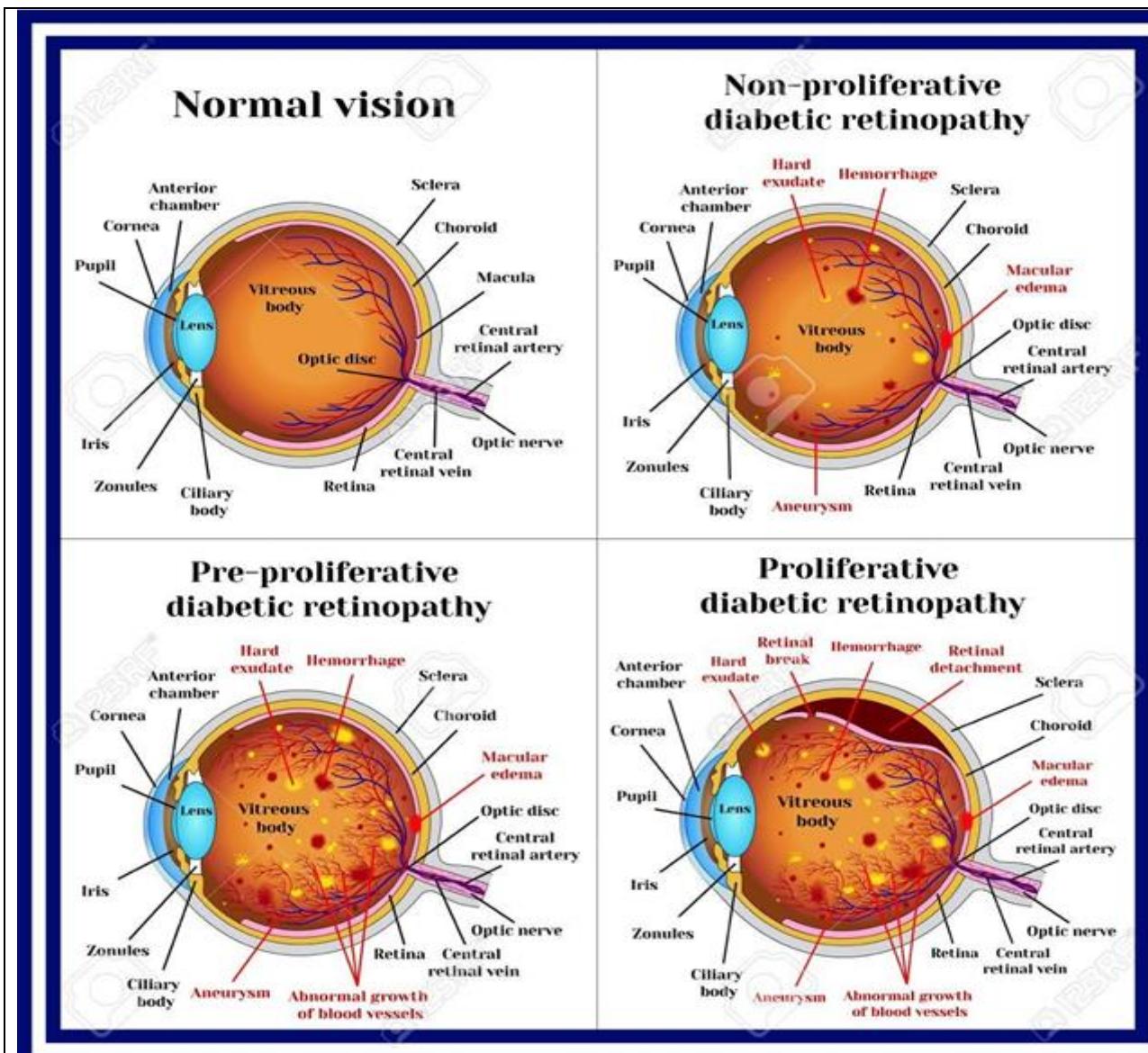


FIGURE 1.3 - TRAINING STATE OF RESULT

Literature Survey

Diabetic retinopathy (DR) is a prevalent and potentially blinding complication of diabetes mellitus. Over the years, researchers have explored the use of machine learning techniques to enhance the detection, diagnosis, and management of DR. This literature survey provides an overview of key studies in the field, highlighting the advancements, challenges, and future directions in utilizing machine learning for diabetic retinopathy. Regular screenings are necessary for diabetic people since an early exudate diagnosis could help to avert blindness. However, ophthalmologists must perform manual examinations, and this takes time, and there are not enough specialists to match the demand for screening.

One seminal study by **Gulshan et al. (2016)** demonstrated the potential of deep learning algorithms in detecting diabetic retinopathy from retinal fundus images. The authors developed a convolutional neural network (CNN) that achieved high sensitivity and specificity, rivaling the performance of human experts. This breakthrough laid the foundation for subsequent research, fueling interest in deep learning-based approaches for DR diagnosis.

Despite the significant advancements, challenges persist in the application of machine learning for **DR**. Interpreting the decisions made by deep learning models remains a crucial concern, as the inherent complexity of these models hinders their explainability. Efforts have been made to address this, with studies exploring methods such as attention mechanisms and visualization techniques to enhance model interpretability.

Furthermore, the integration of machine learning models into clinical practice requires robust validation and real-world testing. Prospective studies evaluating the clinical impact, reliability, and generalizability of these models are necessary to ensure their safe and effective deployment. The use of machine learning techniques for diabetic retinopathy has witnessed significant advancements in recent years.

Deep learning models have shown promise in various tasks, including image classification, lesion detection, and segmentation. Transfer learning approaches have also been explored to overcome limited labeled data. However, challenges such as model interpretability and validation remain. Continued research and collaborations between clinicians, researchers, and technology experts are essential to harness the full potential of machine learning in diabetic retinopathy, ultimately improving patient care and outcomes.

Limitations of the existing Work and Motivation (Why is the particular topic chosen?)

There may be challenges with different imaging modalities and variability in image quality. The training data may not be representative of the population

The Improved algorithms and hardware can help overcome some of these limitations

Early detection and intervention can significantly improve the prognosis of diabetic retinopathy, and motivate further research in this area.

Nowadays diabetics have become a very Harmful disease. In olden days we don't have advanced technology, we lose many people so now we have advanced technology we chose this topic.

Problem Statement/Definition

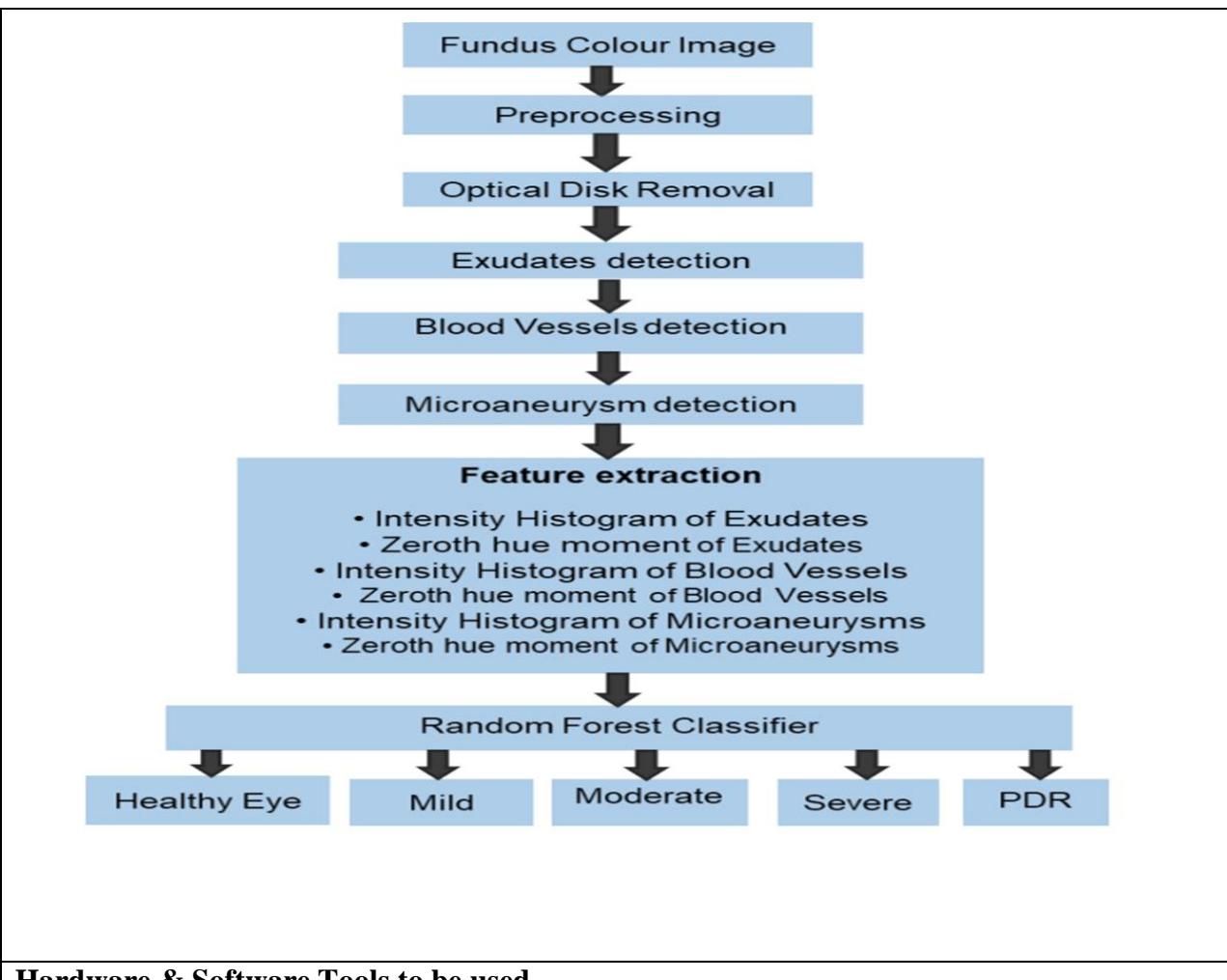
“TO DETECT COTTON WOOL DIABETIC RETINOPATHY USING IMAGE PROCESSING.” PROBLEM ELABORATION:

- Diabetic retinopathy is a disease that causes blindness in people having diabetes.
- Currently, to detect DR, medical staff has to thoroughly examine images of the retina manually taken by the technique of fundus photography. This is time-consuming.
- We proposed a model to detect DR using machine learning techniques such as neural networks to make the detection process automated as well as accurate. Diabetic retinopathy (DR) is a sight-threatening disease that affects individuals with diabetes, leading to blindness if left untreated. Currently, the detection of DR relies on labor-intensive and time-consuming manual examination of retinal images obtained through the technique of fundus photography. This manual process performed by medical staff is

prone to human error and can result in delays in diagnosis and treatment. Therefore, there is a critical need to develop an automated and accurate system for detecting DR using machine learning techniques, specifically neural networks.

- The problem at hand is the inefficiency and subjectivity involved in the manual detection of DR through retinal image analysis. The reliance on human expertise for interpretation and diagnosis leads to delays in detecting the disease, increasing the risk of irreversible vision loss for patients. Additionally, the manual process is labor-intensive and puts a strain on healthcare resources. To address these challenges, we propose the development of a machine learning model, leveraging neural networks, to automate the detection of DR. By training the model on a large dataset of labeled retinal images, the system will learn to recognize the characteristic signs of DR, including micro aneurysms, hemorrhages, and other pathological features. This automated approach will significantly reduce the time and effort required for DR diagnosis, allowing medical staff to focus on providing timely interventions and personalized care for patients.
- The successful implementation of the proposed model will have several benefits. It will enable early detection of DR, facilitating timely interventions and preventing irreversible vision loss. The automation of the detection process will increase efficiency, allowing medical staff to handle a larger volume of cases and prioritize patients in need of immediate attention. Furthermore, the objectivity of the machine learning model will reduce the subjectivity associated with human interpretations, leading to more consistent and reliable diagnoses.
- The development of an automated and accurate system for detecting DR using machine learning techniques is crucial to improve the efficiency, accuracy, and timeliness of diagnosis. By leveraging neural networks and training the model on a comprehensive dataset, we aim to revolutionize the detection process and enhance patient outcomes in the management of diabetic retinopathy.

Objectives


- The scope in our research is to split these classes into proliferative and non-proliferative stages of diabetic retinopathy.
- Extracting hand-crafted features from raw images after different processing is one of the best scopes we have worked in this research.
- The objective of using Image processing method is to get some features which are specifically responsible for the diabetic retinopathy.
- Develop a robust machine learning model, specifically leveraging neural networks, to automate the detection of diabetic retinopathy (DR) from retinal images obtained through fundus photography.
- Train the machine learning model on a diverse and representative dataset of labeled retinal images to ensure its ability to accurately recognize and classify various stages of DR, ranging from mild non-proliferative retinopathy to severe proliferative retinopathy.
- Optimize the machine learning model's performance by exploring and implementing advanced techniques such as deep learning architectures, transfer learning, and ensemble models to achieve high sensitivity and specificity in DR detection.
- Evaluate the developed model using rigorous validation methodologies, including cross-validation and independent test datasets, to assess its generalizability and performance on unseen data. Compare the model's performance against human experts to measure its efficacy and potential to enhance diagnostic accuracy.

- Explore interpretability techniques and visualization methods to provide insights into the decision-making process of the machine learning model. Enhance the model's transparency and explainability to build trust among healthcare professionals and facilitate its integration into clinical practice.
- Assess the clinical impact and potential benefits of the machine learning model in real-world settings. Evaluate its effectiveness in reducing the time required for DR detection, enabling timely interventions, and improving patient outcomes by minimizing the risk of vision loss.
- Investigate the feasibility of integrating the developed machine learning model into existing healthcare systems and workflows. Consider scalability, compatibility, and computational resources required to ensure seamless integration and utilization in clinical settings.
- Collaborate with healthcare professionals, ophthalmologists, and medical experts to obtain their feedback, insights, and expertise throughout the model development and evaluation process. Ensure that the developed solution aligns with clinical needs and contributes to improved patient care.
- Facilitate knowledge transfer and dissemination of findings by publishing research papers in reputable scientific journals and presenting results at relevant conferences and medical forums. Share the developed model and its implementation guidelines with the scientific community to encourage further research and collaborations in the field of diabetic retinopathy detection using machine learning.
- Continuously update and improve the machine learning model by incorporating new advancements in the field, leveraging larger and more diverse datasets, and integrating feedback from clinical practitioners. Strive for continuous innovation to enhance the model's performance and address emerging challenges in diabetic retinopathy detection and management.

These objectives, the proposed research aims to revolutionize the detection and diagnosis of diabetic retinopathy using machine learning, ultimately improving patient outcomes and reducing the global burden of this sight-threatening

Methodology

When analyzing a color fundus image of the eye, we can determine whether diabetic retinopathy has impacted the eye and at what stage. We pre-process the image and use classification algorithms to find diabetic retinopathy. Preprocessing, feature extraction, and Diabetic Retinopathy categorization make up the final three parts of the process. Green channel extraction, Contrast Limited Adaptive Histogram Equalization, dilation, the morphological process, median filtering, thresholding, and other pre-processing techniques are examples. During the feature extraction phase, we extract a number of features, including the locations of exudates, blood vessels, and microaneurysms, among others. Finally, during the classification phase, we'll check for the presence or absence of diabetic retinopathy. Additionally, whether it is Mild, Moderate, Severe, or **PDR** if it is present.

Hardware & Software Tools to be used

COMPUTER:

A powerful computer is recommended, especially for training complex machine learning models. The specifications will depend on the size of your dataset and the complexity of your model. A computer with a high-end CPU, a good amount of RAM (e.g., 16 GB or more), and a dedicated GPU (e.g., NVIDIA GeForce or Tesla series) can significantly accelerate training times.

STORAGE:

Sufficient storage is required to store the dataset, preprocessed images, trained models, and any intermediate files generated during the training process. The amount of storage required will depend on the size of your dataset.

EXTERNAL GPUS:

If your computer does not have a powerful GPU or if you want to speed up training even further, you can consider using external GPUs like NVIDIA's external GPU enclosures, such as the NVIDIA RTX series.

SOFTWARE REQUIREMENTS:

PYTHON:

Most machine learning frameworks and libraries are written in Python, so you will need Python installed on your system.

MACHINE LEARNING FRAMEWORKS:

Choose a machine learning framework that supports deep learning, as diabetic retinopathy classification typically involves convolutional neural networks (**CNNs**). Popular frameworks include **TensorFlow**, **PyTorch**, and **Keras**.

IMAGE PROCESSING LIBRARIES:

Libraries like **OpenCV** or **PIL** (Python Imaging Library) are commonly used for image pre-processing tasks such as resizing, cropping, and normalization.

DATA MANIPULATION AND ANALYSIS:

Libraries like **NumPy** and **Pandas** are essential for handling numerical operations and data manipulation.

DEEP LEARNING MODELS:

You may utilize pre-trained **CNN** models like **VGG16**, **ResNet**, or **Inception**, which are available in the chosen deep-learning framework.

IDE OR TEXT EDITOR:

You'll need an Integrated Development Environment (IDE) or a text editor to write your code. Popular choices include **PyCharm**, **Jupyter Notebook**, or **Visual Studio Code**.

ADDITIONAL LIBRARIES:

Depending on your specific requirements, you may need additional libraries for tasks such as data augmentation (e.g., imaging), model evaluation (e.g., **sci-kit-learn**), or visualizations (e.g., **Matplotlib**, **Seaborn**).

It's important to note that the above requirements may vary depending on the specific details of your project, such as the size of the dataset, the complexity of the models, and the available resources. Adjustments and optimizations may be needed based on your specific situation.

References (IEEE Format)

[1] References Akara Sopharak, Matthew N. Dailey, Bunyarit Uyyanonvara, Sarah Barman, Tom Williamson, Khine Thet Nwe& Yin Aye Moe (2010). "Machine learning approach to automatic exudate detection in retinal images from diabetic patients." *Journal of Modern Optics*, 57:2, 124-135.

[2] Shailesh Kumar and Basant Kumar (2018). "Diabetic Retinopathy Detection by Extracting Area and Number of Microaneurysm from Colour Fundus Image." 5th International Conference on Signal Processing and Integrated Networks (SPIN) (2018):, 359-364.

[3] Sohini Roychowdhury, Dara D. Koozekananiand Keshab K. Parhi (2014). "DREAM: Diabetic Retinopathy Analysis Using Machine Learning." *IEEE Journal of Biomedical and Health Informatics* (Volume: 18 , Issue: 5 , Sept. 2014), 1717 – 1728.

[4] Liu, Z.; Chutatape, O.; Krishna, S.M. Presented at the 19th IEEE Conference on Engineering in Medicine and Biology Society, Chicago, USA, Oct 30–Nov 2, 1997.

[5] Nayak, J., Bhat, P. S., Acharya, U. R., Lim, C. M., and Kagathi, M. Automated identification of different stages of diabetic retinopathy using digital fundus images.

[6] Sinthanayothin, C.; Boyce, J.F.; Williamson, T.H.; Cook, H.L.; Mensah, E.; Lal, S.; Usher, D. J. *Diabet. Med.* 2002, 19, 105–112.

[7] Usher, D.; Dumskyj, M.; Himaga, M.; Williamson, T.H.; Nussey, S.; Boyce, J. J. *Diabet. Med.* 2004, 21, 84–90.

[8] Kavitha, D.; Shenbaga, S.D. Presented at the 2nd ICISIP Conference on Intelligent Sensing and Information Processing, Madras, India, Jan 4–7, 2005.